Cortical Implant
   HOME

TheInfoList



OR:

A cortical implant is a subset of
neuroprosthetics Neuroprosthetics (also called neural prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the ...
that is in direct connection with the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting of ...
of the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a v ...
. By directly interfacing with different regions of the cortex, the cortical implant can provide stimulation to an immediate area and provide different benefits, depending on its design and placement. A typical cortical implant is an implantable
microelectrode array Microelectrode arrays (MEAs) (also referred to as multielectrode arrays) are devices that contain multiple (tens to thousands) microelectrodes through which neural signals are obtained or delivered, essentially serving as neural interfaces that co ...
, which is a small device through which a neural signal can be received or transmitted. The goal of a cortical implant and neuroprosthetic in general is "to replace neural circuitry in the brain that no longer functions appropriately."


Overview

Cortical implants have a wide variety of potential uses, ranging from restoring vision to blind patients or helping patients with
dementia Dementia is a disorder which manifests as a set of related symptoms, which usually surfaces when the brain is damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, which negatively affe ...
. With the complexity of the brain, the possibilities for these
brain implants Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern bra ...
to expand their usefulness are nearly endless. Some early work in cortical implants involved stimulation of the visual cortex, using implants made from silicone rubber. Since then, implants have developed into more complex devices using new polymers, such as
polyimide Polyimide (sometimes abbreviated PI) is a polymer containing imide groups belonging to the class of high-performance plastics. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g ...
. There are two ways that cortical implants can interface with the brain, either intracortically (direct) or epicortically (indirect). Intracortical implants have electrodes that penetrate into the brain, while epicortical implants have electrodes that stimulate along the surface. Epicortical implants mainly record field potentials around them and are generally more flexible compared to their intracortical counterparts. Since the intracortical implants go deeper into the brain, they require a stiffer electrode. However, due to micromotion in the brain, some flexibility is necessary in order to prevent injury to the brain tissue.


Visual implants

Certain types of cortical implants can partially restore vision by directly stimulating the
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and ...
. Early work to restore vision through cortical stimulation began in 1970 with the work of Brindley and Dobelle. With their initial experimentation, some patients were able to recognize small images at fairly close distances. Their initial implant was based on the surface of the visual cortex and it did not provide as clear of images that it could, with an added downside of damage to surrounding tissues. More recent models, such as the "Utah" Electrode Array use deeper cortical stimulation that would hypothetically provide higher resolution images with less power needed, thus causing less damage. One of the major benefits to this method of artificial vision over any other
visual prosthetic A visual prosthesis, often referred to as a bionic eye, is an experimental visual device intended to restore functional vision in those with partial or total blindness. Many devices have been developed, usually modeled on the cochlear implant or ...
is that it bypasses many neurons of the visual pathway that could be damaged, potentially restoring vision to a greater number of blind patients. However, there are some issues that come with direct stimulation of the visual cortex. As with all implants, the impact of their presence over extended periods of time must be monitored. If an implant needs to be removed or re-positioned after a few years, complications can occur. The visual cortex is much more complex and difficult to deal with than the other areas where artificial vision are possible, such as the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
or
optic nerve In neuroanatomy, the optic nerve, also known as the second cranial nerve, cranial nerve II, or simply CN II, is a paired cranial nerve that transmits visual system, visual information from the retina to the brain. In humans, the optic nerve i ...
. The visual field is much easier to process in different locations other than the visual cortex. In addition, each areas of the cortex is specialized to deal with different aspects of vision, so simple direct stimulation will not provide complete images to patients. Lastly, surgical operations dealing with brain implants are extremely high-risk for patients, so the research needs to be further improved. However, cortical visual prostheses are important to people who have a completely damaged retina, optic nerve or lateral geniculate body, as they are one of the only ways they would be able to have their vision restored, so further developments will need to be sought out.


Auditory implants

While there has been little development in developing an effective auditory prosthesis that directly interfaces with the
auditory cortex The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates. It is a part of the auditory system, performing basic and higher functions in hearing, such as possible relations to ...
, there are some devices such as an
auditory brainstem implant An auditory brainstem implant (ABI) is a surgically implanted electronic device that provides a sense of sound to a person who is profoundly deaf, due to retrocochlear hearing impairment (due to illness or injury damaging the cochlea or auditory n ...
and a
cochlear implant A cochlear implant (CI) is a surgically implanted neuroprosthesis that provides a person who has moderate-to-profound sensorineural hearing loss with sound perception. With the help of therapy, cochlear implants may allow for improved speech und ...
that have been successful in restoring hearing to deaf patients. There have also been some studies that have used microelectrode arrays to take readings from the auditory cortex in animals. One study has been performed on rats to develop an implant that enabled simultaneous readings from both the auditory cortex and the
thalamus The thalamus (from Greek θάλαμος, "chamber") is a large mass of gray matter located in the dorsal part of the diencephalon (a division of the forebrain). Nerve fibers project out of the thalamus to the cerebral cortex in all directions, ...
. The readings from this new microelectrode array were similar in clarity to other readily available devices that did not provide the same simultaneous readings. With studies like this, advancements can be made that could lead to new auditory prostheses.


Cognitive implants

Some cortical implants have been designed to improve cognitive function. These implants are placed in the
prefrontal cortex In mammalian brain anatomy, the prefrontal cortex (PFC) covers the front part of the frontal lobe of the cerebral cortex. The PFC contains the Brodmann areas BA8, BA9, BA10, BA11, BA12, BA13, BA14, BA24, BA25, BA32, BA44, BA45, BA46, ...
or the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, a ...
. Implants in the prefrontal cortex help restore attention, decision-making and movement selection by duplicating the minicolumnar organization of neural firings. A hippocampal prosthetic aims to help with restoration of a patient's full
long-term memory Long-term memory (LTM) is the stage of the Atkinson–Shiffrin memory model in which informative knowledge is held indefinitely. It is defined in contrast to short-term and working memory, which persist for only about 18 to 30 seconds. Long-t ...
capabilities. Researchers are trying to determine the neural basis for memory by finding out how the brain encodes different memories in the hippocampus. By mimicking the natural coding of the brain with electrical stimulation, researchers look to replace compromised hippocampal regions and restore function. Treatment for several conditions that impact cognition such as
stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
,
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
and
head trauma A head injury is any injury that results in trauma to the skull or brain. The terms ''traumatic brain injury'' and ''head injury'' are often used interchangeably in the medical literature. Because head injuries cover such a broad scope of inju ...
can benefit from the development of a hippocampal prosthetic.
Epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
has also been linked to dysfunction in the CA3 region of the hippocampus.


Brain-computer interfaces

A Brain-computer interface (BCI) is a type of implant that allows for a direct connection between a patient's brain and some form of external hardware. Since the mid-1990s, the amount of research done on BCI's in both animal and human models has grown exponentially. Most brain-computer interfaces are used for some form of neural signal extraction, while some attempt to return sensation through an implanted signal. As an example of signal extraction, a BCI may take a signal from a
paraplegic Paraplegia, or paraparesis, is an impairment in motor or sensory function of the lower extremities. The word comes from Ionic Greek () "half-stricken". It is usually caused by spinal cord injury or a congenital condition that affects the neural ...
patient's brain and use it to move a robotic
prosthetic In medicine, a prosthesis (plural: prostheses; from grc, πρόσθεσις, prósthesis, addition, application, attachment), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trau ...
. Paralyzed patients get a great amount of utility from these devices because they allow for a return of control to the patient. Current research for brain-computer interfaces is focused on determining which regions of the brain can be manipulated by an individual. A majority of research focuses on the sensorimotor region of the brain, using imagined motor actions to drive the devices, while some studies have sought to determine if the cognitive control network would be a suitable location for implantations. This region is a "neuronal network that coordinates mental processes in the service of explicit intentions or tasks," driving the device by intent, rather than imagined motion An example of returning sensation through an implanted signal would be developing a tactile response for a prosthetic limb. Amputees have no touch response in artificial limbs, but through an implant in their
somatosensory cortex In physiology, the somatosensory system is the network of neural structures in the brain and body that produce the perception of touch (haptic perception), as well as temperature (thermoception), body position (proprioception), and pain. It is ...
could potentially give them an artificial sense of touch. A current example of a brain-computer interface would be the
BrainGate BrainGate is a brain implant system built and previously owned by Cyberkinetics, currently under development and in clinical trials, designed to help those who have lost control of their limbs, or other bodily functions, such as patients with amyot ...
, a device developed by
Cyberkinetics Cyberkinetics is an American company with roots tied to the University of Utah. It was co-founded by John Donoghue, Mijail Serruya, Gerhard Friehs of Brown University, and Nicho Hatsopoulos of the University of Chicago. The Braingate technolog ...
. This BCI is currently undergoing a second round of clinical trials as of May 2009. An earlier trial featured a patient with a severe
spinal cord injury A spinal cord injury (SCI) is damage to the spinal cord that causes temporary or permanent changes in its function. Symptoms may include loss of muscle function, sensation, or autonomic function in the parts of the body served by the spinal cor ...
, with no control over any of his limbs. He succeeded in operating a computer mouse with only thoughts. Further developments have been made that allow for more complex interfacing, such as controlling a robotic arm.


Advantages

Perhaps one of the biggest advantages that cortical implants have over other neuroprostheses is being directly interfaced with the cortex. Bypassing damaged tissues in the
visual pathway The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (the a ...
allows for a wider range of treatable patients. These implants can also act as a replacement for damage tissues in the cortex. The idea of
biomimicry Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from grc, βίος (''bios''), life, and μίμησ ...
allows for the implant to act as an alternate pathway for signals.


Disadvantages

Having any sort of implant that is directly connected to the cortex presents some issues. A major issue with cortical implants is
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
, or how the body will respond to a foreign object. If the body rejects the implant, then the implant will be more of a detriment to the patient instead of a benefit. In addition to biocompatibility, once the implant is in place, the body may have an adverse reaction to it over an extended period of time, rendering the implant useless. Implanting a
microelectrode array Microelectrode arrays (MEAs) (also referred to as multielectrode arrays) are devices that contain multiple (tens to thousands) microelectrodes through which neural signals are obtained or delivered, essentially serving as neural interfaces that co ...
can cause damage to the surrounding tissue. Development of
scar tissue Scar tissue may refer to: Medicine * Scar, an area of fibrous tissue that replaces normal skin after injury * Granulation tissue, a product of healing in major wounds Film and television * ''Scar Tissue'' (1975 film), or ''Wanted: Babysitter'' ...
around the electrodes can prevent some signals from reaching the neurons the implant is meant to. Most microelectrode arrays require neuronal cell bodies to be within 50 μm of the electrodes to provide the best function, and studies have shown that chronically implanted animals have significantly reduced cell density within this range. Implants have been shown to cause
neurodegeneration A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
at the site of implantation as well.
Neural coding Neural coding (or Neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity o ...
represents a difficulty faced by cortical implants, and in particular, implants dealing with cognition. Researchers have found difficulty in determining how the brain codes distinct memories. For example, the way the brain codes the memory of a chair is vastly different from the way it codes for a lamp. With a full understanding of the
neural code Neural coding (or Neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activit ...
, more progress can be made in developing a hippocampal prosthetic that can more effectively enhance memory. Due to the uniqueness of every patient's cortex, it is difficult to standardize procedures involving direct implantation. There are many common physical features between brains, but an individual
gyrus In neuroanatomy, a gyrus (pl. gyri) is a ridge on the cerebral cortex. It is generally surrounded by one or more sulci (depressions or furrows; sg. ''sulcus''). Gyri and sulci create the folded appearance of the brain in humans and other ma ...
or
sulcus (neuroanatomy) In neuroanatomy, a sulcus (Latin: "furrow", pl. ''sulci'') is a depression or groove in the cerebral cortex. It surrounds a gyrus (pl. gyri), creating the characteristic folded appearance of the brain in humans and other mammals. The larg ...
can be different when compared. This leads to difficulties because it causes each procedure to be unique, thus taking longer to perform. In addition, the nature of a microelectrode array intended effect is limited due to the stated variance's presented in association with individual cortex uniqueness i.e. differences. Present day microelectrode arrays are also constrained due their physical size, and achievable data processing/capability rates; which continue to be governed in relation to the characteristics dictated in accordance with
Moore's Law Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empir ...
.


Future developments

As more research is performed on, further developments will be made that will increase the viability and usability of cortical implants. Decreasing the size of the implants would help with keeping procedures less complicated and reducing the bulk. The longevity of these devices is also being considered as developments are made. The goal with the development of new implants is "to avoid the hydrolytic, oxidative and enzymatic degradation due to the harsh environment of the human body or at least to slow it down to a minimum which enables the interface to work over a long time period, before it finally has to be exchanged." With extended operational lifetimes, fewer operations would need to be performed for maintenance, allowing for The amount of polymers that are now able to be used for neural implants has increased, allowing for a greater diversity of devices. As technology improves, researchers are able to more densely place electrodes into arrays, permitting high selectivity. Other areas of investigation are the battery packs that power these devices. Effort has been made to try and reduce the overall size and bulkiness of these packs to make them less obtrusive for the patient. Reducing the amount of power each implant requires is also of interest, as this will reduce the amount of heat the implant makes, therefore reducing the risk of damage to the surrounding tissues.


References

{{reflist, 2 Implants (medicine) Neuroprosthetics